Abstract

A series of experimental and theoretical works are performed to enrich the previous research concerning single water drop impacting on burning ethanol surface. Three typical impact regimes including crater-first-jet, crater-second-jet, and surface bubble are discussed in detail, and an impact regime map is built up. For crater-first-jet and crater-second-jet regimes, the dimensionless maximum crater depth increases with the impact Weber number, but there is a sharp decrease for the regime transitioning from crater-second-jet to surface bubble. In addition, the theoretical maximum crater depth and jet length scales are derived based on energy conservation and conversion. For crater formation, as the drop initial total energy increases, gravity gradually dominates the surface tension effects. For jet formation, however, the surface energy is around nine-times larger than gravitational potential energy when the energy stored in crater is the lowest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.