Abstract

The low-velocity impact behavior of polyester glass fiber composite laminates has been investigated under different clamping conditions, by wetting the specimens surface with fluids having different densities. Unidirectional composite laminates, based on polymer resin and fibers of naval interest, with different thicknesses have been manufactured by resin transfer molding process in order to have a high control of the final properties and a high fiber volume fraction. Impact tests in air have been, first, performed up to penetration on all manufactured composites having four different thicknesses to get information on the material impact behavior. The effect of the clamping conditions and the interaction of the laminates with two fluids different in density, i.e., water and paraffin oil, have been investigated, then, only on the thickest laminates that showed a lower tendency to impact damage. In particular, the impact tests have been performed by impacting the front surface of the sample and by wetting the back surface of the composite samples under unclamped and clamped conditions, replicating the boundary constraints suggested by ASTM D7136 Standard for the conventional impact tests. Experimental results showed a lower initial rigidity, higher absorbed energy and deflection for specimens exposed to liquids with respect to those exposed to air, confirming the need of taking into account the fluid interaction in the case of marine composite applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.