Abstract
AbstractCarbon fiber (CF)/ultra‐high modulus polyethylene (UHMPE) fiber hybrid composites were fabricated using vinyl ester resin as a matrix. Interfacial adhesion of carbon fiber/vinyl ester composites and UHMPE fiber/vinyl ester composites as model composites was optimized using low temperature plasma treatment. Interlaminar shear strengths of carbon fiber/vinyl ester and UHMPE fiber/vinyl ester homocomposite were greatly increased by plasma and silane coupling agent treatment. From the result of the impact test, total absorbed energy of carbon fiber/UHMPE fiber hybrid composites was correlated with laminating sequences at optimized interfacial adhesion between the reinforcing fiber and matrix resin. UHMPE fiber layers of hybrid composites played an important role in absorbing energy. Elastic and plastic deformation of UHMPE fiber layers also played a key role in improving the impact properties of carbon fiber/UHMPE fiber hybrid composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.