Abstract

Aramid fiber/glass fiber hybrid composites were fabricated to investigate the impact behavior of four-layer composites through the analysis of delamination area. The effect of position and content of aramid layer on the impact properties of hybrid composites was examined by using driven dart impact tester. The surface-treated composites were prepared by treating the surface of aramid fiber with oxygen plasma and silane coupling agent. The trend of total impact energy was correlated to that of delamination area in both untreated and treated composites. The impact energy and delamination area of hybrid composites depended on the position of aramid layer. When aramid layer was at back surface, the composite exhibited the higher impact energy and delamination area. In surface-treated composites, however, the position of aramid layer had a minor effect on the impact energy of hybrid composites. This was due to the restriction in deformation of aramid fiber. The impact behavior of four-layer hybrid composites was affected by the delamination area at each interface. The deformation at neighbored-aramid layers increased the deformation at adjacent interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call