Abstract

In this paper, a novel cladding sandwich panel with aluminum foam-filled tubular cores (AFTC panel) was proposed to enhance the impact resistant performance of the traditional sandwich panel with empty tubular cores (ETC panel). The impact force and displacement responses, failure modes and energy absorption of the ETC and AFTC panels under impact loading were studied via drop-weight impact tests and numerical simulations. It was found that the impact process of the sandwich panel could be divided into three stages. In addition, the tubular cores and aluminum foam filler were found to dissipate the majority of the impact energy. The effects of impactor shape, impact position, aluminum foam filler and thickness ratio of flat steel plate to tube (tf/tt) on the impact behaviors of the sandwich panels were quantitatively studied. The results indicated that the impact force and energy absorption could be improved via filling aluminum foam, increasing the aluminum foam density and increasing the contact area between the impactor and sandwich panel. Filling aluminum foam could also avoid the sharp increase of the impact force after the compaction of the sandwich panel. The impact position exhibited little effect on the energy absorption of the sandwich panel when it was away from the edge of the sandwich panel. Moreover, the sandwich panel generally exhibited better energy absorption performances via specifying the flat steel plate and tubular cores to be of similar thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call