Abstract

This study performed an analysis of the influence of the training and test set rational selection on the quality and predictively of the quantitative structure–activity relationship (QSAR) model. The study was carried out on three different datasets of Influenza Neuraminidase (H1N1) inhibitors. The three datasets were divided into training and test sets using three rational selection methods: based on k-means, Kennard–Stone algorithm and Activity and the results were compared with Random selection. Then, a total of 31,490 mathematical models were developed and those models that presented a determination coefficient higher than: r2train > 0.8, r2loo > 0.7, r2test > 0.5 and minimum standard deviation (SD) and minimum root-mean square error (RMS) were selected. The selected models were validated using the internal leave-one-out method and the predictive capacity was evaluated by the external test set. The results indicate that random selection could lead to erroneous results. In return, a rational selection allows for obtaining more reliable conclusions. The QSAR models with major predictive power were found using the k-means algorithm and selection by activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.