Abstract

The study of this paper focuses on local and regional sea-level rise (SLR) and emphasizes complexities in impact assessment of SLR under combined hydrodynamic and morphodynamic conditions induced by extreme events such as hurricanes and typhoons. In terms of integrated coastal/ocean processes modeling, two case studies are presented: The first one is to predict flooding/inundation and erosion in a small-scale estuary in Taiwan induced by a set of SLR scenarios and local extreme hydrological forcing, which includes waves, tides, river floods, and sediment transport; The second case aims at simulating large-scale hydrodynamic responses (i.e. waves and storm surges) to SLR and a hurricane in a region-scale domain covering the northern Gulf Coast. The model is validated by simulating waves, storm surges and morphological changes by using local hydrological conditions. Prediction results show that the variations of water surface elevations, waves, and morphological changes are generally not linearly proportional to the static SLR; the rates of their variable changes are varying with location and topography/bathymetry. To deal with nonlinear features in unsteady and multiscale hydrodynamic and morphodynamic processes in coasts and oceans, it is essential to adopt this integrated-process modeling approach for coastal hazard management in response to local SLR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.