Abstract

Human metapneumovirus (hMPV) is a respiratory paramyxovirus that is distributed worldwide and induces significant airway morbidity. Despite the relevance of hMPV as a pathogen, many aspects of the immune response to this virus are still largely unknown. In this report, we focus on the antiviral immune response, which is critical for viral clearance and disease resolution. Using in vitro and in vivo systems, we show that hMPV is able to induce expression of lambda interferon 1 (IFN-λ1), IFN-λ2, IFN-λ3, and IFN-λ4. The induction of IFN-λ expression by hMPV was dependent on interferon regulatory factor 7 (IRF-7) expression but not on IRF-3 expression. Treatment of hMPV-infected mice with IFN-λ reduced the disease severity, lung viral titer, and inflammatory response in the lung. Moreover, the IFN-λ response induced by the virus was regulated by the expression of the hMPV G protein. These results show that type III interferons (IFN-λs) play a critical protective role in hMPV infection. Human metapneumovirus (hMPV) is a pathogen of worldwide importance. Despite the relevance of hMPV as a pathogen, critical aspects of the immune response induced by this virus remain unidentified. Interferons (IFNs), including IFN-λ, the newest addition to the interferon family, constitute an indispensable part of the innate immune response. Here, we demonstrated that IFN-λ exhibited a protective role in hMPV infection in vitro and in an experimental mouse model of infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.