Abstract

Impact and post impact behavior of fabric reinforced geopolymer composites is investigated in this study. Carbon, E-glass and basalt fabrics are incorporated in the geopolymer matrix. The geopolymer composites are tested for impact resistance to an out-of-plane low velocity impact test, followed by post impact performance testing using residual strength measurement on the sample. Impact properties such as impact energy, energy absorption capacity, and damaged area of the composites were examined for fabric reinforced geopolymer composite samples. The drop weight impact tests were performed on composite samples of 15×15cm. The quality of the samples was examined using C-scan in ultrasonic vibration mode and μCT before and after impact test. The post impact behavior of the composite samples was characterized using four point bending tests. Fiber orientation and alignment was observed using SEM. The results obtained showed that E-glass fabric reinforced composites show slightly better performance than carbon reinforced composites. Especially the damaged area is smaller for E glass composites. Basalt fabric reinforced composites have low bending strength and very low impact resistance. The energy absorption in E-glass is due to post-debond fiber sliding phenomena and in carbon fiber to fiber pull out from the composite. The smaller damaged area is attributed to the higher elastic energy absorption of E-glass fibers. The residual strength of carbon and E-glass composites decreased in relation to the size of the visually damaged area, meaning that no invisible damage took place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.