Abstract

For organic potato producers, the two main challenges are disease and nutrient management. Both are limited by regulations that on the one hand prohibit the use of chemical fertilizers, especially nitrogen, and on the other hand prohibit most synthetic pesticides. Late blight caused by Phytophthora infestans is commonly thought to be the most yield-reducing factor. However, because there is no really effective fungicide available to control late blight, there are virtually no yield loss data available for organic farming conditions. In this paper, the state of the art of organic potato tuber growth under on-farm conditions with respect to disease and nutrient management is summarized by field trials and on-farm surveys on commercial organic crops carried out in the years 1995–1998. Soil nitrogen (N) levels, plant N uptake, disease development of P. infestans and potato yield were measured. Results indicated that N availability was most important in limiting yields in organic potato crops. From on-farm data, a model including disease development, growth duration of the crops until foliage decay and different parameters related to N status of the crop could explain 73% of the observed variation in yield. Only 25% of this variation in yield could be attributed to the influence of late blight. Differences in N availability explained 48%. In conclusion, several points emerged from the results. In organic farming, yields are mainly limited by nutrient availability in spring and early summer. The effects of late blight on yields may often be overestimated and cannot be deduced from results in conventional farming because of the strong interaction with nutrient status. Depending on N availability, tubers stop growing between mid-July (70–90 kg N ha−1 uptake), the end of July (110–140 kg N ha−1 uptake) and mid-August (140–180 kg N ha−1 uptake) due to N limitations. The higher the N status of a potato crop, the longer the growing period needed to achieve the attainable yield and the higher the probability that late blight stops further tuber growth and becomes the key tuber-yield-limiting factor. In the second part of this paper, the interactive effects of soil N availability and the impact of P. infestans on yield in the presence and absence of fungicides from 1996 to 1998 for mid-early main crops are reported. An empirical schematic model of disease impact depending on N availability was developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call