Abstract

AbstractLow cost video sensors used for streaming video signals to help firefighters, require high bit rate due to uncompressed images. To increase spectral efficiency given a limited bandwidth, very high order constellations in high signal to noise ratio regimes can be used. However, noise is not the only factor effecting the high order constellations. These constellations are also sensitive to hardware impairments and system non‐linearities. Therefore, in this paper, the effect of carrier frequency offset (CFO) on the performance of an orthogonal frequency division multiplexing (OFDM) system with high order quadrature amplitude modulation (QAM) is studied. A closed form expression is derived for the maximum normalized residual CFO that an OFDM system with M‐QAM constellation can resist to have an error free symbol detection. Finally, the suitability of common previous CFO estimation techniques such as the cyclic prefix based technique and the Moose technique in these systems are investigate. The results show that the maximum residual CFO that an OFDM system with M‐QAM constellation can resist is proportional to the inverse of . The results also show that very large order QAM constellations such as 4096‐QAM are very sensitive to even small residual CFO values and their performance degrades, significantly. However, the bit error rate analysis indicate that the Moose CFO estimation technique can be used in these systems to compensate the CFO effect, accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.