Abstract

Abstract The gut microbiome has been regarded as one of the fundamental determinants regulating human health, and multi-omics data profiling has been increasingly utilized to bolster the deep understanding of this complex system. However, stemming from cost or other constraints, the integration of multi-omics often suffers from incomplete views, which poses a great challenge for the comprehensive analysis. In this work, a novel deep model named Incomplete Multi-Omics Variational Neural Networks (IMOVNN) is proposed for incomplete data integration, disease prediction application and biomarker identification. Benefiting from the information bottleneck and the marginal-to-joint distribution integration mechanism, the IMOVNN can learn the marginal latent representation of each individual omics and the joint latent representation for better disease prediction. Moreover, owing to the feature-selective layer predicated upon the concrete distribution, the model is interpretable and can identify the most relevant features. Experiments on inflammatory bowel disease multi-omics datasets demonstrate that our method outperforms several state-of-the-art methods for disease prediction. In addition, IMOVNN has identified significant biomarkers from multi-omics data sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call