Abstract

We show how quantized transport can be realized in Floquet chains through encapsulation of a chiral or helical shift. The resulting transport is immutable rather than topological in the sense that it neither requires a band gap nor is affected by arbitrarily strong perturbations. Transport is still characterized by topological quantities but encapsulation of the shift prevents topological phase transitions. To explore immutable transport we introduce the concept of a shiftbox, explain the relevant topological quantities both for momentum-space dispersions and real-space transport, and study model systems of Floquet chains with strictly quantized chiral and helical transport. Natural platforms for the experimental investigation of these scenarios are photonic Floquet chains constructed in waveguide arrays, as well as topolectrical or mechanical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.