Abstract

Therapy for non-Hodgkin’s lymphoma has progressed significantly over the last decades. However, the majority of patients remain incurable, and novel therapies are needed. Because immunotherapy ideally offers target selectivity, an ever increasing number of immunotherapies, both passive and active, are undergoing development. The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of rituximab catalyzed the development of new passive immunotherapy strategies that are currently undergoing clinical evaluation. These include improvement of rituximab efficacy, newer generation anti-CD20 antibodies, drug-conjugated and radio labeled anti-CD20 antibodies, monoclonal antibodies targeting non-CD20 lymphoma antigens, and bispecific antibodies. Active immunotherapy aims at inducing long-lasting antitumor immunity, thereby limiting the likelihood of relapse. Current clinical studies of active immunotherapy for lymphoma consist largely of vaccination and immune checkpoint blockade. A variety of protein- and cell-based vaccines are being tested in ongoing clinical studies. Recently completed phase III clinical trials of an idiotype protein vaccine suggest that the vaccine may have clinical activity in a subset of patients. Efforts to enhance the efficacy of active immunotherapy are ongoing with an emphasis on optimization of antigen delivery and presentation of vaccines and modulation of the immune system toward counteracting immunosuppression, using antibodies against immune regulatory checkpoints. This article discusses results of the various immunotherapy approaches applied to date for B-cell lymphoma and the ongoing trials to improve their effect.

Highlights

  • Indolent non-Hodgkin’s lymphomas (NHL), the most common of which is follicular lymphoma (FL), remain incurable

  • Several new generation anti-CD20 monoclonal antibodies (mAbs) are currently undergoing clinical investigation (Table 1). These mAbs are humanized or fully human, unlike the chimeric rituximab. Their design was based on current insights into the mechanisms of rituximab action and resistance aiming at improving their functions, including greater antibody-target binding, enhanced FcRγ binding, enhanced complement-dependent cytotoxicity (CDC) and programmed cell death (PCD)

  • Neelapu et al (2005) reported that vaccination by Id–keyhole limpet hemocyanin (KLH) plus GM-CSF in patients with mantle cell lymphoma following rituximab-containing chemotherapy induced vigorous CD4 and CD8 antitumor type I cytokine responses in the absence of circulating B-cells. These results show that severe B-cell depletion does not impair T-cell priming in humans, suggesting that Id vaccines may be used in combination with rituximab

Read more

Summary

Nurit Hollander *

The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of rituximab catalyzed the development of new passive immunotherapy strategies that are currently undergoing clinical evaluation. These include improvement of rituximab efficacy, newer generation anti-CD20 antibodies, drug-conjugated and radio labeled anti-CD20 antibodies, monoclonal antibodies targeting non-CD20 lymphoma antigens, and bispecific antibodies. Current clinical studies of active immunotherapy for lymphoma consist largely of vaccination and immune checkpoint blockade. Efforts to enhance the efficacy of active immunotherapy are ongoing with an emphasis on optimization of antigen delivery and presentation of vaccines and modulation of the immune system toward counteracting immunosuppression, using antibodies against immune regulatory checkpoints.

INTRODUCTION
Activity compared with rituximab Phase of development
Phase of development
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.