Abstract

Long noncoding RNAs (lncRNAs) are involved in the regulation of triple-negative breast cancer (TNBC) senescence, while pro-carcinogenic lncRNAs resist senescence onset leading to the failure of therapy-induced senescence (TIS) strategy, urgently identifying the key senescence-related lncRNAs (SRlncRNAs). We mined seven SRlncRNAs (SOX9-AS1, LINC01152, AC005152.3, RP11-161 M6.2, RP5-968 J1.1, RP11-351 J23.1 and RP11-666A20.3) by bioinformatics, of which SOX9-AS1 was reported to be pro-carcinogenic. Invitro experiments revealed the highest expression of SOX9-AS1 in MDA-MD-231 cells. SOX9-AS1 knockdown inhibited cell growth (proliferation, cycle and apoptosis) and malignant phenotypes (migration and invasion), while SOX9-AS1 overexpression rescued these effects. Additionally, SOX9-AS1 knockdown facilitated tamoxifen-induced cellular senescence and the transcription of senescence-associated secretory phenotype (SASP) factors (IL-1α, IL-1β, IL-6 and IL-8) mechanistically by resisting senescence-induced Wnt signal (GSK-3β/β-catenin) activation. Immune infiltration analysis revealed that low SOX9-AS1 expression was accompanied by a high infiltration of naïve B cells, CD8+ T cells and γδ T cells. In conclusion, SOX9-AS1 resists TNBC senescence via regulating the Wnt signalling pathway and inhibits immune infiltration. Targeted inhibition of SOX9-AS1 enhances SASP and thus mobilises immune infiltration to adjunct TIS strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.