Abstract

BackgroundLiquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is increasingly used for immunosuppressive drug tests. However, most LC-MS/MS tests are laboratory-developed and their agreement is unknown in different Korean laboratories. This interlaboratory comparison study evaluated test reproducibility and identified potential error sources.MethodsTest samples containing three concentrations of tacrolimus, sirolimus, everolimus, cyclosporine, and mycophenolic acid were prepared by pooling surplus samples from patients undergoing routine therapeutic drug monitoring and tested in duplicate in the participating 10 clinical laboratories. Reconstitution and storage experiments were conducted for the commonly used commercial calibrator set. The robust estimators of reproducibility parameters were calculated. Spearman’s rank correlation coefficient (rho, ρ) was used to evaluate the correlation between drugs. Multiple linear regression was used to determine whether the experimental conditions alter the calibration curves.ResultsThe reproducibility coefficient of variation exceeded 10% only for sirolimus concentrations 1 and 2 (10.8% and 12.5%, respectively) and everolimus concentrations 1 and 2 (12.3% and 11.4%, respectively). The percent difference values showed weak correlations between sirolimus and everolimus (ρ=0.334, P =0.175). The everolimus calibration curve slope was significantly altered after reconstitution following prolonged 5°C storage (P =0.015 for 14 days; P =0.025 for 28 days); the expected differences at 6 ng/mL were 0.598% for 14 days and 0.384% for 28 days.ConclusionsLC-MS/MS test reproducibility for immunosuppressive drugs seems to be good in the Korean clinical laboratories. Continuous efforts are required to achieve test standardization and harmonization, especially for sirolimus and everolimus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.