Abstract

Ozone is an oxidant gas and an ubiquitous oxidant air pollutant with the potential to adversely affect pulmonary immune function with a consequent increase in disease susceptibility. Pulmonary natural killer (NK) activity was measured in order to assess the pulmonary immunotoxicity of continuous ozone exposure. Continuous ozone exposures at 1.0 ppm were performed for 23.5 hours per day for either 1, 5, 7, or 10 consecutive days. Pulmonary immune function was assessed by measuring natural killer (NK) activity from whole-lung homogenates of male Fischer-344 rats. Results of this study indicated that continuous ozone exposure for 1, 5, or 7 days resulted in a significant decrease in pulmonary NK activity. This suppressed pulmonary NK activity returned to control levels after continuous exposure to ozone for 10 days. The suppressed pulmonary NK response was thus attenuated and returned to normal values in the continued presence of ozone gas. This attenuation process is dynamic, complex, and doubtless involves several cell types and/or products of these cells. Pulmonary NK activity was also suppressed at 0.5 ppm ozone, but not at 0.1 ppm ozone, following 23.5 hours of exposure. NK activity is important for defense against viral, bacterial, and neoplastic disease. The depressed NK activity resulting from continuous ozone exposure could therefore result in a compromised ability to defend against pulmonary diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call