Abstract

The present study compares different post-embedding staining methods, including conventional and low-temperature embedding techniques, for demonstration of the keratin and vimentin cytoskeleton of epidermal cells, applying commercially available polyclonal and monoclonal antibodies. Immunogold staining (5-nm particles) was performed on the following material: (a) osmium-fixed and Durcupan-embedded material, etched with various solutions; (b) aldehyde-fixed material embedded in Lowicryl K4M at 4 degrees C and -35 degrees C; (c) aldehyde-fixed material embedded in Lowicryl K11M at -60 degrees C with and without cryoprotection with glycerol. In conventionally embedded material we failed to demonstrate intermediate filaments, whereas they were stained after low-temperature embedding with Lowicryl, i.e., K4M 4 degrees C, K4M -35 degrees C, and K11M -60 degrees C. The keratin and vimentin cytoskeleton reacted exclusively with polyclonal antibodies. The best results for antigenicity as well as structural preservation were achieved by post-embedding staining of K4M -35 degrees C-embedded material. Antibodies to keratin stained the cytoskeleton in keratinocytes of all epidermal layers. Filaments were decorated in a linear alignment. Antibodies to vimentin stained the cytoskeleton of Langerhans cells and melanocytes. In these cells a linear distribution pattern of the reaction product along the filaments and an extrafilamentous cluster formation were observed, indicating staining of vimentin and a vimentin-associated protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call