Abstract

In this report, an electrochemical immunosensor for the selective and sensitive monitoring of Aβ1-42 fibrils is presented. The sensing platform was prepared by the formation of a 4,4′-thiobisbenzenethiol (TBBT) self-assembled monolayer on a clean gold surface followed by the covalent entrapment of gold nanoparticles (AuNPs). The half-antibody fragments of the Anti-Amyloid Fibrils antibody were immobilized on AuNPs via S-Au covalent bonds. Each step of immunosensor fabrication was characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The biosensor was successfully used for the sensing of Aβ1-42 fibrils in both phosphate saline buffer (PBS) and artificial blood plasma (ABP). The immunosensor sensitivity estimated based on calibration slopes was better in the presence of APP in the comparison to PBS. The LOD values obtained for both measuring media were of 0.6 pM level. The moderate response towards Aβ1-42 oligomers demonstrated the immunosensor selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.