Abstract

Recent works have generally indicated that insects exhibit two immune response strategies: external and internal immune defense. However, the immune-related trade-offs and physiological regulatory mechanisms in red palm weevil, a major invasive pest, remain unclear. Based on postinfection survivorship experiments, we initially measured baseline constitutive external immunity (antibacterial activity of external secretions) and internal immunity (phenoloxidase and antibacterial activity of hemolymph) in uninfected individuals. Then, we challenged the individual immune system and examined subsequent investment in immune function. Our data showed that multiple factors (instar, age, sex, mating status, immune treatment) interacted to affect immune components and infection outcomes, but the magnitude and nature of the impact varied in each case. Although immune senescence is a common phenomenon in which immune function decreases with age, different components of the immune system changed differentially. Notably, mating activity may impose an immunity-related cost, with some evidence of sexual dimorphism and age-associated differences. Finally, parameters related to life-history traits usually decreased temporarily because of increased immunity, suggesting that the ultimate consequences of immune function fitness may be physiologically traded off with other fitness aspects, including growth, development, mating, reproduction, and longevity. These results reveal the complex factors that impact immunity as well as the physiological regulation of individual immunity, which may determine the evolution and outcome of immune senescence and trade-offs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call