Abstract

Although an extrapolation from the clinical experience in adults can often be considered to support the pediatric use for most pharmaceutical compounds, differences in safety profiles between adult and pediatric patients can be observed. The developing immune system may be affected due to exaggerated pharmacological or non-expected effects of a new drug. Toxicology studies in juvenile animals could therefore be required to better evaluate the safety profile of any new pharmaceutical compound targeting the pediatric population. The Göttingen minipig is now considered a useful non-rodent species for non-clinical safety testing of human pharmaceuticals. However, knowledge on the developing immune system in juvenile minipigs is still limited. The objective of the work reported here was to evaluate across-age proportions of main immune cells circulating in blood or residing in lymphoid organs (thymus, spleen, lymph nodes) in Göttingen Minipigs. In parallel, the main immune cell populations from healthy and immunocompromised piglets were compared following treatment with cyclosporin A (CsA) at 10 mg/kg/day for 4 wk until weaning. The study also assessed functionality of immune responses using an in-vivo model after “Keyhole limpet hemocyanin” (KLH) immunization and an ex-vivo lymph proliferation assay after stimulation with Concanavalin A. The results demonstrated variations across age in circulating immune cell populations including CD21+ B-cells, αβ-T- and γδ-T-cells, NK cells, and monocytes. CsA-induced changes in immune functions were only partially recovered by 5 mo after the end of treatment, whereas the immune cell populations affected by the treatment returned to normal levels in animals of the same age. Taken together, the study here shows that in this model, the immune function endpoints were more sensitive than the immunophenotyping endpoints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.