Abstract
Short peptides derived from the transmembrane sequence of NK activating receptors and associated molecules were tested in vitro for inhibition of NK cell cytotoxicity using a standard (51)Cr release assay in the absence or presence of peptides. NKL23 cell line was used as the NK effector and the target was the NKL23 sensitive 721.221 cell line. NKp46, NKp30, NKG2D and CD3-zeta peptides inhibited NK activity at higher concentration (100 microM) compared to controls by 6-13% (p<0.05). Modification of one non-effective peptide (NKP44) significantly enhanced inhibition by 30%, 17% and 11% at 100 microM, 50 microM and 10 microM respectively compared to controls. A T-cell antigen receptor-alpha chain transmembrane sequence derived peptide (CP) significantly inhibited NKL cell activation by 20-30% (p<0.05) at 50 microM and 100 microM concentrations compared to the control. The structural similarities between these immuno-receptors, and in particular the need for transmembrane electrostatic interactions for receptor function, provides the basis for current and future targeted therapeutic strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.