Abstract

A rapid, sensitive and quantitative assay method for Hepatitis B surface antigen (HBsAg) is of paramount importance for the drug development and in the diagnosis of this disease. Here, we proposed a novel biosensor that sensitively and selectively screen Hepatitis B surface antigen. This strategy relies on the cross-linking aggregation of gold nanoparticles (AuNPs) that were decorated with Hepatitis B surface antibody (HBsAb) and Raman reporter 5-thio-nitrobenzoic acid (TNB) by Hepatitis B surface antigen. The immune reaction between HBsAb and HBsAg offers this strategy high specificity, and the use of AuNPs additionally allows a visual and homogeneous assay format, thus permitting improved simplicity and throughput of the assays. The selectivity and sensitivity in HBsAg assay were achieved with a wide linear response range from 0.5 ng/mL to 50 ng/mL and a detection limit of 0.2 ng/mL. The results indicated that this strategy can offer a simple, robust and convenient platform for HBsAg analysis and related biochemical studies with high sensitivity and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.