Abstract

In order to screen immunogenic candidate antigens for the development of a brucellosis subunit vaccine, an immunoproteomic assay was used to identify immunogenic proteins from Brucella melitensis 16M soluble proteins. In this study, a total of 56 immunodominant proteins were identified from the two-dimensional electrophoresis immunoblot profiles by liquid chromatography tandem mass spectrometry (LC–MS/MS). Two proteins of interest, riboflavin synthase alpha chain (RS-α) and Loraine synthase (LS-2), which are both involved in riboflavin synthesis, were detected by two-dimensional immunoblots using antisera obtained from Brucella-infected human and goats. LS-2, however, is an already well-known vaccine candidate. Therefore, we focussed our studies on the novel vaccine candidate RS-α. B. melitensis RS-α and LS-2 were then expressed in Escherichia coli as fusion proteins with His tag. The humoral and cellular immune responses to the recombinant (r)RS-α was characterized. In response to in vitro stimulation by rRS-α, splenocytes from mice vaccinated with rRS-α were able to produce γ-interferon (IFN-γ) and interleukin (IL)-2 but not interleukin (IL)-4 and interleukin (IL)-10. Furthermore, rRS-α or rLS-2-vaccinated mice were partially protected against B. melitensis infection. Our results suggested that we have developed a high-throughout, accurate, rapid and highly efficient method for the identification of candidate antigens by a combination of immunoproteomics with immunisation and bacterial challenge and rRs-α could be a useful candidate for the development of subunit vaccines against B. melitensis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call