Abstract
The Tau protein is the major component of intracellular filaments observed in a number of neurodegenerative diseases known as tauopathies. The pathological mutant of Tau containing a proline-to-leucine mutation at position 301 (P301L) leads to severe human tauopathy. Here, we assess the impact of FK506-binding protein with a molecular mass of ∼52 kDa (FKBP52), an immunophilin protein that interacts with physiological Tau, on Tau-P301L activity. We identify a direct interaction of FKBP52 with Tau-P301L and its phosphorylated forms and demonstrate FKBP52's ability to induce the formation of Tau-P301L oligomers. EM analysis shows that Tau-P301L oligomers, induced by FKBP52, can assemble into filaments. In the transgenic zebrafish expressing the human Tau-P301L mutant, FKBP52 knockdown is sufficient to redrive defective axonal outgrowth and branching related to Tau-P301L expression in spinal primary motoneurons. This result correlates with a significant reduction of pT181 pathological phosphorylated Tau and with recovery of the stereotypic escape response behavior. Collectively, FKBP52 appears to be an endogenous candidate that directly interacts with the pathogenic Tau-P301L and modulates its function in vitro and in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.