Abstract

Acute erythroid leukemia (AEL) is a disease continuum between Myelodysplastic syndrome (MDS) and Acute myeloid leukemia (AML) with the cellular hallmark of uncontrolled proliferation and impaired differentiation of erythroid progenitor cells. First described by Giovanni di Guglielmo in 1917 AEL accounts for less than 5% of all de novo AML cases. There have been efforts to characterize AEL at a molecular level, describing recurrent alterations in TP53, NPM1 and FLT3 genes. A genomic analysis of AEL cases confirmed its complexity. Despite these advances, the biology underlying erythroid proliferations remains unclear and the prognosis is dismal with a median survival of only 3months for pure erythroid leukemia (PEL). Marker combinations suitable for the identification and characterization of leukemic stem cell (LSC) candidates, monitoring measurable residual disease (MRD) during chemotherapy treatment and the development of innovative targeted therapies are missing. Here, we developed a mass cytometry panel for an in-depth characterization of erythroid and myeloid blast cell populations from human AEL bone marrow samples in comparison to other AML subtypes and healthy counterparts. A total of 8 AEL samples were analyzed and compared to 28 AML samples from different molecular subtypes, healthy bone marrow counterparts (n=5) and umbilical cord blood (n=6) using high-dimensional mass cytometry. Identification of erythroid and myeloid blast populations in high-dimensional mass cytometry data enabled a refined view on erythroblast differentiation stages present in AEL erythroid blasts and revealed immunophenotypical profiles specific to AEL. Profiling of phenotypic LSCs revealed aberrant erythroid marker expression in the CD34+ CD38- stem cell compartment. In addition, the identification of novel candidate surface marker combinations and aberrancies might enhance clinical diagnostics of AEL. We present a high-parameter mass cytometry approach feasible for immunophenotypical analysis of blast and stem cell populations in myeloid neoplasms with erythroid predominance laying the foundation for more precise experimental approaches in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.