Abstract
ObjectiveNon-alcoholic fatty liver disease (NAFLD) is characterized by hepatic macrophage inflammation, steatosis and fibrosis. Liposomes injected intravenously passively target hepatic myeloid cells and have potential to deliver immunomodulatory compounds and treat disease. We investigated targeting, delivery, immunomodulation and efficacy of liposomes in mice with diet-induced NASH. MethodsLiposome-encapsulated lipophilic curcumin or 1,25-dihydroxy-vitamin D3 (calcitriol) were injected intravenously into mice with diet-induced NASH. Liver and cell liposome uptake was assessed by in vivo imaging and flow cytometry. Immunomodulation of targeted cells were assessed by RNA transcriptome sequencing. NASH was assessed by histological scoring, serum liver enzymes and fasting glucose/insulin and liver RNA transcriptome sequencing. ResultsLiposomes targeted lipid containing MHC class-II+ hepatic dendritic cells in mice and humans. Delivery of liposomal curcumin to hepatic dendritic cells shifted their inflammatory profile towards a regulatory phenotype. Delivery of liposomal curcumin or calcitriol to mice with diet-induced NASH led to reduced liver inflammation, fibrosis and fat accumulation, and reduced insulin resistance. RNA transcriptome sequencing of liver from treated mice identified suppression of pathways of immune activation, cell cycle and collagen deposition. ConclusionsLiposomes are a new strategy to target lipid rich inflammatory dendritic cells and have potential to deliver immunomodulatory compounds to treat NASH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.