Abstract

Microcin C7 (McC) as a viable immunomodulator peptide can be a potential solution for pathogenic microbial infection in the post-antibiotic era and has gained substantial attention. This study was designed to evaluate the immunomodulatory activity of Microcin C7 in a cyclophosphamide (CTX)-induced immunodeficient mouse model. We show that Microcin C7 treatment significantly alleviated the CTX-caused body weight loss, improved the feed and water consumption to improve the state of the mice, and elevated the absolute number and proportion of peripheral blood lymphocytes as well as the level of hemoglobulin. We further aim to characterize the phenotypes of the immune function and intestinal health profiles. The results demonstrate that Microcin C7 treatment increased serum levels of immunoglobulin A (IgA), IgG, interleukin 6, and hemolysin, promoted splenic lymphocyte proliferation induced by concanavalin A and LPS, and enhanced the phagocytosis of peritoneal macrophages immunized by sheep red blood cells. Additionally, Microcin C7 treatment decreased levels of diamine oxidase and d-lactate, ameliorated CTX-induced intestinal morphological damage, and increased the levels of zonula occluden 1, occludin, claudin-1, mucin 2, and secretary IgA in the jejunum and colon. Moreover, Microcin C7 administration is sufficient to reverse CTX-induced intestinal microbiota dysbiosis by increasing the number of Lactobacillus and Bifidobacterium, decreasing the number of Escherichia coli in colonic contents. Collectively, our results demonstrate that Microcin C7 may have protective and immunomodulatory functions and could be a potential candidate used in animal feed, functional foods, and immunological regimens..

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.