Abstract
Recent reports suggest that mesenchymal stem cells (MSCs) have immunomodulatory properties. Mesenchymal stem cells can suppress the immune response toward alloantigen in vitro by inhibiting T cell proliferation in mixed-lymphocyte reactions (MLRs). However, relatively little has been reported regarding the immunomodulative potential of MSCs in vivo. Herein the authors confirm the immunomodulatory effects of rat MSCs in vitro and tested for tolerogenic features in a model of allogeneic heart transplantation. Mesenchymal stem cells were obtained from bone marrow aspirates of male Lewis rats (major histocompatibility complex [MHC] haplotype RT1) and ACI rats (RT1). Lewis MSCs were cocultured with ACI spleen cells to reveal direct effects of MSCs on lymphocytes. In addition, MSCs were added to MLRs between ACI T cells as responders and irradiated Lewis spleen cells as stimulators. Finally, MSCs were administered in an allogeneic heart transplantation model at different doses (with and without cyclosporin A [CsA]). Mesenchymal stem cells appeared with typical spindle-shaped morphology in culture and readily differentiated into adipocytes when exposed to differentiation media. Mesenchymal stem cells expressed MHC class I, but not class II or costimulatory molecules. In vitro, MSCs phagocytosed ACI spleen cells. When introduced into an MLR, donor MSCs suppressed the proliferation of stimulated T cells. However, in vivo, MSC injection did not prolong allograft survival. In addition, concurrent treatment with low-dose CsA and MSCs accelerated allograft rejection. The present data confirm previous reports suggesting that MSCs have immunomodulatory properties in vitro. However, their tolerogenic properties in vivo must be questioned, as MSC injections were not only ineffective at prolonging allograft survival, but tended to promote rejection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.