Abstract
Tuberculosis (TB) is one of the most widely prevalent infectious diseases that cause significant mortality. Bacillus Calmette-Guérin (BCG), the current TB vaccine used in clinics, shows variable efficacy and has safety concerns for immunocompromised patients. There is a need to develop new and more effective TB vaccines. Outer membrane vesicles (OMVs) are vesicles released by Mycobacteria that contain several lipids and membrane proteins and act as a good source of antigens to prime immune response. However, the use of OMVs as vaccines has been hampered by their heterogeneous size and low stability. Here we report that mycobacterial OMVs can be stabilized by coating over uniform-sized 50nm gold nanoparticles. The OMV-coated gold nanoparticles (OMV-AuNP) show enhanced uptake and activation of macrophages and dendritic cells. Proteinase K and TLR inhibitor studies demonstrated that the enhanced activation was attributed to proteins present on OMVs and was mediated primarily by TLR2 and TLR4. Mass spectrometry analysis revealed several potential membrane proteins that were common in both free OMVs and OMV-AuNP. Such strategies may open up new avenues and the utilization of novel antigens for developing TB vaccines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.