Abstract

DDT (bis[4-chlorophenyl]-1,1,1-trichloroethane) is responsible for many immuno-dysregulatory functions in exposed animals, but data particularly on complement system and macrophages are limited. In this study we have shown that DDT activates the complement system through the alternative pathway in the absence of any pathogen. A significant ( p < 0.05) increase in C3b, C3d and C3a generation, and decline in complement hemolytic activity was observed in insecticide exposed sera. The uncontrolled complement consumption reduces the lytic activity of the complement, which enhances the susceptibility to pyogenic infection if the exposure to DDT remains unabated. Further, DDT induced the significant ( p < 0.05) production of tumor necrosis factor-α (TNF-α) and nitric oxide (NO) in macrophages and thus contributes inflammatory reactions, cytokine imbalance and immune-dysregulation. These molecular changes in macrophages lead to structural aberrations like heterochromatin condensation, loss of pseudopodia, cytoplasmic vacuolization, DNA fragmentation and hypodiploid nuclei as seen in our study, suggesting apoptosis. However, in presence lipopolysaccharide, DDT induced significant ( p < 0.05) suppression of TNF-α and NO generation, suggestive of impairment of macrophage microbiocidal effects. This study concludes that the functional and structural derangements of macrophages in association with uncontrolled and excessive complement consumption by DDT are perhaps one of the major mechanisms contributing to the immunosuppressive effects of insecticide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call