Abstract

The conformational dynamism and aggregate state of small heat shock proteins (sHSPs) may be crucial for their functions in thermoprotection of plant cells from the detrimental effects of heat stress. Ectopic expression of single chain fragment variable (scFv) antibodies against cytosolic sHSPs was used as new tool to generate sHSP loss-of-function mutants by antibody-mediated prevention of the sHSP assembly in vivo. Anti-sHSP scFv antibodies transiently expressed in heat-stressed tobacco protoplasts were not only able to recognize the endogenous sHSPs but also prevented their assembly into heat stress granula (HSGs). Constitutive expression of the same scFv antibodies in transgenic plants did not alter their phenotype at normal growth temperatures, but their leaves turned yellow and died after prolonged stress at sublethal temperatures. Structural analysis revealed a regular cytosolic distribution of stress-induced sHSPs in mesophyll cells of stress-treated transgenic plants, whereas extensive formation of HSGs was observed in control cells. After prolonged stress at sublethal temperatures, mesophyll cells of transgenic plants suffered destruction of all cellular membranes and finally underwent cell death. In contrast, mesophyll cells of the stressed controls showed HSG disintegration accompanied by appearance of polysomes, dictyosomes and rough endoplasmic reticulum indicating normalization of cell functions. Apparently, the ability of sHSPs to assemble into HSGs as well as the HSG disintegration is a prerequisite for survival of plant cells under continuous stress conditions at sublethal temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call