Abstract

This study aimed to evaluate the immunomodulatory effects and signaling mechanisms of Lactobacillus rhamnosus GG (LGG) and its components [surface-layer protein (SLP), DNA, exopolysaccharides, and CpG oligodeoxynucleotides] on lipopolysaccharide (LPS)-stimulated porcine intestinal epithelial cell (IEC) IPEC-J2. The mRNA expressions of inflammatory cytokines and Toll-like receptors (TLRs) were measured by quantitative real-time polymerase chain reaction. Activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling was detected by western blot and immunofluorescence. Pretreatment of IPEC-J2 cells with LGG, SLP, or exopolysaccharides significantly alleviated LPS-induced inflammatory cytokines and TLR activation at mRNA level. LGG, SLP, and exopolysaccharides also attenuated LPS-induced MAPK and NF-κB signaling activations. CpG oligodeoxynucleotides significantly increased the interleukin 12, tumor necrosis factor α, and TLR9 mRNA levels and enhanced NF-κB signaling activation in LPS-stimulated cells. LGG had immunomodulatory effects on LPS-induced porcine IECs by modulating TLR expressions and inhibiting MAPK and NF-κB signaling to decrease inflammatory cytokine expressions. Components of LGG exerted immunomodulatory effects on porcine IECs, especially immunostimulatory CpG oligodeoxynucleotides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call