Abstract
Brain injuries are often associated with intensive care admissions, and carry high morbidity and mortality rates. Ischemic stroke is one of the most frequent causes of injury to the central nervous system. It is now increasingly clear that human stroke causes multi-organ systemic disease. Brain inflammation may lead to opposing local and systemic effects. Suppression of systemic immunity by the nervous system could protect the brain from additional inflammatory damage; however, it may increase the susceptibility to infection. Pneumonia and urinary tract infection are the most common complications occurring in patients after stroke. The mechanisms involved in lung-brain interactions are still unknown, but some studies have suggested that inhibition of the cholinergic anti-inflammatory pathway and release of glucocorticoids, catecholamines, and damage-associated molecular patterns (DAMPs) are among the pathophysiological mechanisms involved in communication from the ischemic brain to the lungs after stroke. This review describes the modifications in local and systemic immunity that occur after stroke, outlines mechanisms of stroke-induced immunosuppression and their role in pneumonia, and highlights potential therapeutic targets to reduce post-stroke complications. Despite significant advances towards a better understanding of the pathophysiology of ischemic stroke-induced immunosuppression and stroke-associated pneumonia (SAP) in recent years, many unanswered questions remain. The true incidence and outcomes of SAP, especially in intensive care unit settings, have yet to be determined, as has the full extent of stroke-induced immunosuppression and its clinical implications.
Highlights
Stroke is the second leading cause of death worldwide, and will affect at least one sixth of all persons at least once in their lives [1]
Besides local inflammatory immune responses in the brain, stroke alters systemic immunity, predisposing patients to immunosuppression and infections, which are associated with poorer functional outcomes and increased morbidity [4]
This review describes the changes in local and systemic immunity that occur after stroke, outlines mechanisms of stroke-induced immunosuppression, and highlights potential therapeutic targets for reduction of post-stroke complications
Summary
Stroke is the second leading cause of death worldwide, and will affect at least one sixth of all persons at least once in their lives [1]. Besides local inflammatory immune responses in the brain, stroke alters systemic immunity, predisposing patients to immunosuppression and infections (mainly pneumonia and urinary tract infections), which are associated with poorer functional outcomes and increased morbidity [4]. This review describes the changes in local and systemic immunity that occur after stroke, outlines mechanisms of stroke-induced immunosuppression (with particular emphasis on its role in pneumonia), and highlights potential therapeutic targets for reduction of post-stroke complications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.