Abstract

The cervicovaginal microbiome plays an important role in protecting women from dysbiosis and infection caused by pathogenic microorganisms. In healthy reproductive-age women the cervicovaginal microbiome is predominantly colonized by protective Lactobacillus spp. The loss of these protective bacteria leads to colonization of the cervicovaginal microenvironment by pathogenic microorganisms resulting in dysbiosis and bacterial vaginosis (BV). Mobiluncus mulieris and Eggerthella sp. are two of the many anaerobes that can contribute to BV, a condition associated with multiple adverse obstetric and gynecological outcomes. M. mulieris has been linked to high Nugent scores (relating to BV morphotypes) and preterm birth (PTB), whilst some bacterial members of the Eggerthellaceae family are highly prevalent in BV, and identified in ~85-95% of cases. The functional impact of M. mulieris and Eggerthella sp. in BV is still poorly understood. To determine the individual immunometabolic contributions of Eggerthella sp. and M. mulieris within the cervicovaginal microenvironment, we utilized our well-characterized human three-dimensional (3-D) cervical epithelial cell model in combination with multiplex immunoassays and global untargeted metabolomics approaches to identify key immune mediators and metabolites related to M. mulieris and Eggerthella sp. infections. We found that infection with M. mulieris significantly elevated multiple proinflammatory markers (IL-6, IL-8, TNF-α and MCP-1) and altered metabolites related to energy metabolism (nicotinamide and succinate) and oxidative stress (cysteinylglycine, cysteinylglycine disulfide and 2-hydroxygluatrate). Eggerthella sp. infection significantly elevated multiple sphingolipids and glycerolipids related to epithelial barrier function, and biogenic amines (putrescine and cadaverine) associated with elevated vaginal pH, vaginal amine odor and vaginal discharge. Our study elucidated that M. mulieris elevated multiple proinflammatory markers relating to PTB and STI acquisition, as well as altered energy metabolism and oxidative stress, whilst Eggerthella sp. upregulated multiple biogenic amines associated with the clinical diagnostic criteria of BV. Future studies are needed to evaluate how these bacteria interact with other BV-associated bacteria within the cervicovaginal microenvironment.

Highlights

  • In healthy reproductive age women, the cervicovaginal microbiome is generally dominated by Lactobacillus spp

  • We assessed whether Eggerthella sp. and M. mulieris infections induced cytotoxicity in cervical epithelial cell monolayers at three doses which corresponded with the final OD600 of 0.1, 0.01 and 0.001 of 1x105 cervical cells/ml

  • bacterial vaginosis (BV) is characterized by colonization of the cervicovaginal epithelium by a diverse community of anaerobic bacteria

Read more

Summary

Introduction

In healthy reproductive age women, the cervicovaginal microbiome is generally dominated by Lactobacillus spp. These beneficial bacteria acidify the cervicovaginal microenvironment via lactic acid production, which contributes to protection against infections by pathogenic and opportunistic microorganisms (O’hanlon et al, 2011). BV is associated with a range of adverse gynecologic and obstetric outcomes including an increased risk of sexually transmitted infections (STI) and preterm birth (PTB). Are two of the many anaerobes that may contribute to the biofilm formation, yet their mechanistic contributions to BV and related adverse gynecologic and obstetric outcomes are still poorly understood (Danielsson et al, 2011; Machado and Cerca, 2015) Mobiluncus mulieris and Eggerthella sp. are two of the many anaerobes that may contribute to the biofilm formation, yet their mechanistic contributions to BV and related adverse gynecologic and obstetric outcomes are still poorly understood (Danielsson et al, 2011; Machado and Cerca, 2015)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call