Abstract

Rabbit polyclonal antibodies raised to gp90, a fragment of the embryonic chick neural retina Ca2+-dependent adhesive molecule, gp130, recognize gp130 and inhibit Ca2+-dependent cell-cell adhesion. When tested against a panel of 10-day embryonic tissues, one of these antisera recognizes a component with a molecular weight identical to that of gp130 in embryonic chick cerebrum, optic lobe, hind brain, spinal cord and neural retina only; the second antiserum recognizes a similar component in all of the embryonic chick tissues tested. These data imply the existence of an extended family of closely related cell surface components with immunologically distinct subgroups each of which may mediate Ca2+-dependent cell-cell adhesion. As the term CAM, or cell adhesion molecule, has become common usage we propose to refer to these molecules as calCAMs, reflecting their calcium dependence. Analysis of fragments and endoglycosidase digests of NcalCAM have allowed a comparison of its structure with similar molecules from different tissues and species that have been implicated in Ca2+-dependent cell-cell adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.