Abstract

Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) has been widely used to treat many types of cancer. It is well established that PD-L1 expressing cancer cells could directly inhibit the cytotoxicity of PD-1+ T cells via PD-L1-PD-1 interaction. However, histological quantification of intratumoral PD-L1 expression provides limited predictive value and PD-L1 negative patients could still benefit from ICB treatment. Therefore, the current major clinical challenges are low objective response rate and unclear immunological mechanisms behind responding vs. non-responding patients. Here, we review recent studies highlighting the importance of longitudinal pre- and post-ICB treatment on patients with various types of solid tumor to elucidate the mechanisms behind ICB treatment. On one hand, ICB induces changes in the tumor microenvironment by reinvigorating intratumoral PD-1+ exhausted T cells ("releasing the brakes"). On the other hand, ICB can also affect systemic antitumor immunity in the tumor-draining lymph node to induce priming/activation of cancer specific T cells, which is evident by T cell clonal expansion/replacement in peripheral blood. These studies reveal that ICB treatment not only acts on the tumor microenvironment ("battlefield") but also acts on immune organs ("training camp") of patients with solid tumors. A deeper understanding of the immunological mechanisms behind ICB treatment will pave the way for further improvements in clinical response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call