Abstract

Neoadjuvant chemotherapy (NAC) has improved overall survival in patients with pancreatic ductal adenocarcinoma (PDAC), but its effects on immune gene signatures are unknown. Here, we examined the immune transcriptome after NAC for PDAC. Resected tumor specimens were obtained from 140 patients with PDAC who received surgery first (n = 93) or NAC (n = 47). Six patients were randomly selected from each group, and RNA was extracted from tumor tissues. We compared 770 immune-related genes among the 2 groups using nCounterPanCancer Immune Profiling (NanoString Technologies, Seattle, Wash). Gene clusters were classified into 14 immune function groups based on gene ontology argolism by nSolver 4.0 software (NanoString Technologies), and corresponding immune cell function scores were compared. Eleven genes (LY86, SH2D1A, CD247, TIGIT, CR2, CD83, LAMP3, CXCR4, DUSP4, SELL, and IL2RA) were significantly downregulated in the NAC group. Gene expression analysis showed that the functions of regulatory T cells, B cells, and natural killer CD56 dim cells were significantly decreased in the NAC group. Neoadjuvant chemotherapy may suppress regulatory T cells and B-cell function in the PDAC microenvironment. The 11 identified genes could be useful for predicting the efficacy of NAC and could be therapeutic targets for PDAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call