Abstract

Outer membrane proteins (OMPs) of Gram-negative bacteria have been known as potential vaccine targets due to their antigenic properties and host specificity. Here, we focused on the exploration of the immunogenic potential and protective efficacy of total OMPs of Salmonella enterica serovar Typhi due to their multi epitope properties, adjuvanted with nanoporous chitosan particles (NPCPs). The study was designed to extrapolate an effective, low cost prophylactic approach for typhoid fever being getting uncontrolled in Pakistan due to emergence of extensively drug resistant (XDR) strains. The OMPs of two S. Typhi variants (with and without Vi capsule) alone and with nanoporous chitosan particles as adjuvant were comparatively analyzed for immunogenic potential in mice. Adaptive immunity was evaluated by ELISA and relative quantification of cytokine gene expression (IL4, IL6, IL9, IL17, IL10, TNF, INF and PPIA as house keeping gene) using RT-qPCR. Statistical analysis was done using Welch's test. The protection was recorded by challenging the immunized mice with 50% ×LD50 of S. Typhi. The Vi + ve-OMPs of S. Typhi showed the most promising results by ELISA and significantly high expression of IL-6, IL-10 and IL-17 and 92.5% protective efficacy with no detectable side effects. We can conclude that the OMPs of Vi + ve S. Typhi are the most promising candidates for future typhoid vaccines because of cost effective preparation without expensive purification steps and multi-epitope properties. Chitosan adjuvant may have applications for oral protein based vaccines but found less effective in injectable preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call