Abstract
Oxygen-reactive species are being described as agents responsible for cell degeneration mechanisms resulting from membrane, enzyme, and nuclear alterations. Lipid peroxidation on its own is considered to be one of the consequences of the free radicals attack, and among the different reactive aldehydes that can be formed from the decomposition of lipid peroxides, the most extensively assayed have been malondialdehyde (MDA). However, the different techniques currently used for MDA assay (HPLC, GLC) are barely sensitive enough to follow its production at the cellular level. In order to develop an immunofluorescent technique able to detect cellular damages provoked by lipoperoxidation, polyclonal antibodies against lysozyme modified by MDA treatment have been raised in rabbits. We show that this immunserum recognizes specifically all the MDA-treated proteins tested, but not the intact proteins or the proteins treated by other aldehydes. Moreover, we demonstrate using an ELISA technique that the amount of immunoreactive proteins in MDA-treated membrane erythrocytes is proportional to the concentration of MDA applied, suggesting that this assay may represent a quantitative method of determination of lipoperoxidative alterations. In addition, when coupled to an indirect fluorophore antibody (FITC), the immunserum allows a precise location of these modified proteins within the membranes of erythrocytes in which lipid peroxidation was initiated by far UV irradiation. In summary, the interest of this work is to provide an immunological probe that can precociously detect membrane damages induced by MDA, regardless of the cell type and pro-oxidant (physiological or pathological) conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.