Abstract

Development of HPV-associated cancers not only depends on efficient negative regulation of cell cycle control that supports the accumulation of genetic damage, but also relies on immune evasion that enable the virus to go undetected for long periods of time. In this way, HPV-related tumors usually present MHC class I down-regulation, impaired antigen-processing ability, avoidance of T-cell mediated killing, increased immunosuppression due to Treg infiltration and secrete immunosuppressive cytokines. Thus, these are the main obstacles that immunotherapy has to face in the treatment of HPV-related pathologies where a number of different strategies have been developed to overcome them including new adjuvants. Although antigen-specific immunotherapy induced by therapeutic HPV vaccines was proved extremely efficacious in pre-clinical models, its progression through clinical trials suffered poor responses in the initial trials. Later attempts seem to have been more promising, particularly against the well-defined precursors of cervical, anal or vulvar cancer, where the local immunosuppressive milieu is less active. This review focuses on the advances made in these fields, highlighting several new technologies (such as mRNA vaccine, plant-derived vaccine). The most promising immunotherapies used in clinical trials are also summarized, along with integrated strategies, particularly promising in controlling tumor metastasis and in eliminating cancer cells altogether.After the early promising clinical results, the development of therapeutic HPV vaccines need to be implemented and applied to the users in order to eradicate HPV-associated malignancies, eradicating existing perception (after the effectiveness of commercial preventive vaccines) that we have already solved the problem.

Highlights

  • Cervical cancer is the third most common cancer in women and the fifth most common overall cancer worldwide as age standardized incidence rate in both sexes combined [1]

  • Cancer development depends on efficient negative regulation of cell cycle control supporting the accumulation of genetic damage, and on immune evasion that enables the virus to lie undetected for a long time

  • The development of cervical cancer depends on efficient negative regulation of cell-cycle control supporting the accumulation of genetic damage, and on a sophisticated viral mechanism of immune evasion [20,21,22]

Read more

Summary

Introduction

Cervical cancer is the third most common cancer in women and the fifth most common overall cancer worldwide as age standardized incidence rate in both sexes combined [1]. A new strategy (TriVax) based on the administration of co-stimulatory anti-CD40 monoclonal, TLR agonist Polyinosinic-polycytidylic acid [Poly(I:C)] and CD8+ T-cell epitope HPV 16 E7 (aa49-57) was able to induce tumor clearance in two HPV-induced murine cancer models [57] Many of these protein/peptide-based vaccines moved to clinical trials where all of them indicated low toxicity and a good safety profile, but a strong discordance exists between immune and clinical responses, reinforcing the need of further improvement to the vaccination. An anti-PD-1 antibody (CT-011) with Treg-cell depletion by low-dose cyclophosphamide (CPM), combined with HPV 16 E7 peptide vaccine, produced synergistic antigen-specific immune responses inducing complete regression of established tumors in a significant percentage of treated animals, with prolonging survival [143]. Ipilimumab has been approved for melanoma, but ongoing trials are testing the drug in other tumors, among them locally advanced cervical cancer, in a sequential regimen following chemoradiation (NCT01711515)

Conclusions
25. Piersma SJ
64. Genticel
Findings
77. McCormick AA
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.