Abstract

The plasma membrane Na +/Ca 2+ exchanger is believed to play a role in the regulation of Ca 2+ fluxes in neurons, though the lack of specific inhibitors has limited the delineation of its precise contribution. We recently reported the development of antibodies against a 36-kDa brain synaptic membrane protein which immunoprecipitated exchanger activity from solubilized membranes. In the present study we examined the kinetics of the Na +/Ca 2+ exchanger in primary neurons in culture, in a neuronal hybrid cell line (NCB-20), and in a fibroblast-like cell line (CV-1) to see whether the level of exchanger activity correlated with the degree of immunostaining produced by our antibodies. The V max was determined for each cell type and found to be highest in primary neurons. Exchanger activity increased in primary neurons between days 1 and 6 in culture, but no such time-dependent change occurred in either of the cell lines. Immunoblot analysis of the three cell types probed with the anti-36-kDa protein antibodies revealed significantly greater immunostaining in the primary neurons compared with the other two cell types. Intensity of staining of neurons also increased significantly between days 1 and 6 in culture. Immunocytochemistry showed significant labelling of the primary neurons on the neuritic processes and points of contact between cells. The NCB-20 and CV-1 cells showed considerably lower levels of immunoreactivity. The antibodies immunoextracted ∼90% of the exchanger activity in the primary neurons and ∼70 and 50% of the activity in NCB-20 and CV-1 cells respectively. Thus the expression of the 36-kDa protein appears to be closely associated with the Na +/Ca 2+ exchanger in neuronal cells and, possibly to a lesser extent, in non-neuronal cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.