Abstract

Paracrine cross-talk between tumor cells and immune cells within the tumor microenvironment underlies local mechanisms of immune evasion. Signal transducer and activator of transcription 3 (STAT3), which is constitutively activated in diverse cancer types, is a key regulator of cytokine and chemokine expression in murine tumors, resulting in suppression of both innate and adaptive antitumor immunity. However, the immunologic effects of STAT3 activation in human cancers have not been studied in detail. To investigate how STAT3 activity in human head and neck squamous cell carcinoma (HNSCC) might alter the tumor microenvironment to enable immune escape, we used small interfering RNA and small-molecule inhibitors to suppress STAT3 activity. STAT3 inhibition in multiple primary and established human squamous carcinoma lines resulted in enhanced expression and secretion of both proinflammatory cytokines and chemokines. Although conditioned medium containing supernatants from human HNSCC inhibited lipopolysaccharide-induced dendritic cell activation in vitro, supernatants from STAT3-silenced tumor cells reversed this immune evasion mechanism. Moreover, supernatants from STAT3-silenced tumor cells were able to stimulate the migratory behavior of lymphocytes from human peripheral blood in vitro. These results show the importance of STAT3 activation in regulating the immunomodulatory mediators by human tumors and further validate STAT3 as a promising target for therapeutic intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.