Abstract
Reptilian skin is tough and scaled representing an evolutionary adaptation to the terrestrial environment. The presence of sulfhydryl oxidase during the process of hardening of the corneous layer in reptilian epidermis has been analyzed by immunocytochemistry and immunoblotting. Sulfhydryl oxidase-like immunoreactivity of proteins in the 50-65kDa range of molecular weight is mainly observed in the transitional and pre-corneous layers of crocodilians, chelonian, and in the forming beta-layer of lepidosaurians. The ultrastructural localization of the enzyme by immunogold in lizard epidermis during renewal and resting stages shows that the labeling is mainly distributed in the cytoplasm and along the accumulating beta-packets of differentiating beta-cells while it appears very low to undetectable in differentiating alpha-cells of the lacunar, clear, mesos, and alpha-layers. The labeling however becomes absent or undetectable also in the fully mature beta-layer. The study shows that an oxidative enzyme is likely responsible of the cross-linking of the numerous cysteines present in the main proteins accumulated in corneocytes of reptilian epidermis, known as corneous beta-proteins (beta-keratins). This process of disulphide bond formation is probably largely responsible for the formation of hard beta-corneous layers in reptilian scales, a difference with alpha-corneous layers where substrate proteins of transglutaminase appear predominant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.