Abstract
To investigate the effects of mechanical deformation on matrix degradation in fibrous joints, coronal suture explants from neonatal rabbits were stressed in vitro for 24 hours in an established tooth-movement model system. The metalloproteinase collagenase (CL) and its inhibitor, TIMP (tissue inhibitor of metalloproteinases), were immunolocalized in two ways by a two-step indirect technique: (1) extracellularly by immunoprecipitation at the site of secretion, and (2) intracellularly by incubation of the explants with the ionophore monensin. Immunoprecipitates of CL and TIMP were distributed throughout the sutural and periosteal tissues of nonstressed explants. In stressed explants, however, CL immunoprecipitates were predominantly associated with an area of rounded cells between the bone ends. In explants treated with monensin a significant increase in the number of CL-positive cells was observed in this cellular area; active enzyme was suggested by the demonstration of CL bound to collagen. Extracellular TIMP was not seen within the area of rounded cells of stressed explants, but intracellular TIMP was detectable; this suggests that insufficient TIMP was available to immunoprecipitate with anti-TIMP, probably because it had become irreversibly complexed with active CL. Since the area of rounded cells corresponds to the site of increased cell proliferation in this and other animal models of tooth movement, these data suggest that collagenase production and cell proliferation might be correlated. We speculate that matrix degradation is an essential prerequisite for cell proliferation as it creates room to accommodate an increase in cell population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Orthodontics & Dentofacial Orthopedics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.