Abstract

Placental development involves a series of events that depend on the coordinated action of proliferation, differentiation and invasion of trophoblasts. Studies on cell cycle related proteins controlling these events are fairly limited. It is still not fully determined how placental tissue proliferation is affected by intrauterine growth retardation (IUGR). Information on cell cycle related proteins that control these events is limited and how they are affected in IUGR is not fully understood. The aim of this study was to understand the role of cell cycle regulators in IUGR placentas and to determine the spatio-temporal immunolocalization of these cell cycle regulators in human IUGR and normal term placentas. Placental samples were stained immunohistochemically with PCNA, Ki67, cyclin D3, p27 and p57 antibodies and were examined by light microscopy. In all regions of IUGR placentas, PCNA, Ki67 and cyclin D3 staining intensities were statistically significantly decreased compared to normal controls. p27 staining intensity of the IUGR group was statistically significantly increased in villous parts and chorionic plates in comparison with the normal term placentas. Moreover, p57 staining intensity was statistically significantly increased in all parts of the IUGR group compared to controls. The observed placental abnormalities in IUGR placentas may be associated with arrest mechanisms affecting cell proliferation and cell cycle alterations in IUGR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.