Abstract

Heat shock proteins (HSPs) improve cross-presentation of linked tumor antigens, thus they can be exploited in therapeutic vaccine design. Herein, in silico analyses of different vaccine constructs were performed based on human papillomavirus (HPV)-16 E7 protein linked to Homo sapiens/Mus musculus Hsp27 or Hsp70 in multiepitope and whole sequence forms. Then, computational comparison between different orientations of Hsp/E7 was carried out in both forms. Finally, molecular docking was performed between the designed constructs and signaling (TLRs) or endocytic (CD14, LOX-1 and SREC-1) receptors. Our data represented the high-ranked T-cell epitopes and the potential B-cell epitopes of Homo sapiens/Mus musculus Hsp27 and Hsp70. Moreover, molecular docking showed that whole sequence of Hsp27 had better interaction with all receptors than whole sequence of Hsp70 suggesting likely stronger stimulation of innate and adaptive immunity. All designed Homo sapiens/Mus musculus Hsp27/E7 constructs had better docking scores with the endocytic receptors especially SREC-1 than all designed Homo sapiens/Mus musculus Hsp70/E7 constructs in both orientations. Generally, the multiepitope-/whole sequence-based Homo sapiens/Mus musculus Hsp27-E7 fusion constructs showed more conservancy and immunogenicity than other designed constructs. These fusion constructs were non-allergenic, non-toxic and stable suggesting them as promising vaccine candidates against HPV-related cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call