Abstract

Reports on T-cell cross-reactivity against SARS-CoV-2 epitopes in unexposed individuals have been linked with prior exposure to the human common cold coronaviruses (HCCCs). Several studies suggested that cross-reactive T-cells response to live attenuated vaccines (LAVs) such as BCG (Bacillus Calmette-Guérin), OPV (Oral Polio Vaccine), and MMR (measles, mumps, and rubella) can limit the development and severity of COVID-19. This study aims to identify potential cross-reactivity between SARS-CoV-2, HCCCs, and LAVs in the context of T-cell epitopes peptides presented by HLA (Human Leukocyte Antigen) alleles of the Indonesian population. SARS-CoV-2 derived T-cell epitopes were predicted using immunoinformatics tools and assessed for their conservancy, variability, and population coverage. Two fully conserved epitopes with 100% similarity and nine heterologous epitopes with identical T-cell receptor (TCR) contact residues were identified from the ORF1ab fragment of SARS-CoV-2 and all HCCCs. Cross-reactive epitopes from various proteins of SARS-CoV-2 and LAVs were also identified (15 epitopes from BCG, 7 epitopes from MMR, but none from OPV). A majority of the identified epitopes were observed to belong to ORF1ab, further suggesting the vital role of ORF1ab in the coronaviruses family and suggesting it as a candidate for a potential universal coronavirus vaccine that protects against severe disease by inducing cell mediated immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call