Abstract
Rotavirus (RV) and Norovirus (NV) are the main viral etiologic agents of acute gastroenteritis (AG), a serious pediatric condition associated with significant death rates and long-term complications. Anti-RV vaccination has been proved efficient in the reduction of severe AG worldwide, however, the available vaccines are all attenuated and have suboptimal efficiencies in developing countries, where AG leads to substantial disease burden. On the other hand, no NV vaccine has been licensed so far. Therefore, we used immunoinformatics tools to develop a multi-epitope vaccine (ChRNV22) to prevent severe AG by RV and NV. Epitopes were predicted against 17 prevalent genotypes of four structural proteins (NV's VP1, RV's VP4, VP6 and VP7), and then assembled in a chimeric protein, with two small adjuvant sequences (tetanus toxin P2 epitope and a conserved sequence of RV's enterotoxin, NSP4). Simulations of the immune response and interactions with immune receptors indicated the immunogenic properties of ChRNV22, including a Th1-biased response. In silico search for putative host-homologous, allergenic and toxic regions also indicated the vaccine safety. In summary, we developed a multi-epitope vaccine against different NV and RV genotypes that seems promising for the prevention of severe AG, which will be further assessed by in vivo tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.