Abstract
Background Small ruminant morbillivirus or peste des petits ruminants virus (PPRV) is an acute and highly contagious viral disease of goats, sheep, and other livestock. This study aimed at predicting an effective multiepitope vaccine against PPRV from the immunogenic proteins haemagglutinin (H), matrix (M), fusion (F), and nucleoprotein (N) using immunoinformatics tools. Materials and Methods The sequences of the immunogenic proteins were retrieved from GenBank of the National Center for Biotechnology Information (NCBI). BioEdit software was used to align each protein from the retrieved sequences for conservancy. Immune Epitope Database (IEDB) analysis resources were used to predict B and T cell epitopes. For B cells, the criteria for electing epitopes depend on the epitope linearity, surface accessibility, and antigenicity. Results Nine epitopes from the H protein, eight epitopes from the M protein, and ten epitopes from each of the F and N proteins were predicted as linear epitopes. The surface accessibility method proposed seven surface epitopes from each of the H and F proteins in addition to six and four epitopes from the M and N proteins, respectively. For antigenicity, only two epitopes 142PPERV146 and 63DPLSP67 were predicted as antigenic from H and M, respectively. For T cells, MHC-I binding prediction tools showed multiple epitopes that interacted strongly with BoLA alleles. For instance, the epitope 45MFLSLIGLL53 from the H protein interacted with four BoLA alleles, while 276FKKILCYPL284 predicted from the M protein interacted with two alleles. Although F and N proteins demonstrated no favorable interaction with B cells, they strongly interacted with T cells. For instance, 358STKSCARTL366 from the F protein interacted with five alleles, followed by 340SQNALYPMS348 and 442IDLGPAISL450 that interacted with three alleles each. The epitopes from the N protein displayed strong interaction with BoLA alleles such as 490RSAEALFRL498 that interacted with five alleles, followed by two epitopes 2ATLLKSLAL10 and 304QQLGEVAPY312 that interacted with four alleles each. In addition to that, four epitopes 3TLLKSLALF11, 356YFDPAYFRL364, 360AYFRLGQEM368, and 412PRQAQVSFL420 interacted with three alleles each. Conclusion Fourteen epitopes were predicted as promising vaccine candidates against PPRV from four immunogenic proteins. These epitopes should be validated experimentally through in vitro and in vivo studies.
Highlights
Small ruminant morbillivirus (previously called peste des petits ruminants virus (PPRV)) is one of the most damaging ruminant diseases
This study focused mainly on the production of a peptide vaccine against H, M, F, and N proteins of PPRV using immunoinformatics tools
Epitopes that were predicted from B cell prediction methods like 142PPERV146 and 305TVTL308 from the H protein and 63DPLSP67 and
Summary
Small ruminant morbillivirus (previously called peste des petits ruminants virus (PPRV)) is one of the most damaging ruminant diseases. The disease is characterized by high fever, depression, anorexia, ocular and nasal discharge, pneumonia, necrosis and ulceration of mucous membranes, and inflammation of the gastrointestinal tract leading to severe diarrhea [6, 7]. It causes high death rates in goats and sheep up to 100% and 90%, respectively. Small ruminant morbillivirus or peste des petits ruminants virus (PPRV) is an acute and highly contagious viral disease of goats, sheep, and other livestock. This study aimed at predicting an effective multiepitope vaccine against PPRV from the immunogenic proteins haemagglutinin (H), matrix (M), fusion (F), and nucleoprotein (N) using immunoinformatics tools
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.